Darshan Institute of Engineering & Technology Linked List

1. What s linked list? What are different types of linked list? OR
Write a short note on singly, circular and doubly linked list. OR
Advantages and disadvantages of singly, circular and doubly linked list.

e Alinked list is a collection of objects stored in a list form.

e Alinked list is a sequence of items (objects) where every item is linked to the next.

e Alinked list is a non primitive type of data structure in which each element is dynamically allocated and
in which elements point to each other to define a linear relationship.

¢ Elements of linked list are called nodes where each node contains two things, data and pointer to next

node.

¢ Linked list require more memory compared to array because along with value it stores pointer to next

node.

e Linked lists are among the simplest and most common data structures. They can be used to implement
other data structures like stacks, queues, and symbolic expressions, etc...

Node
A
e I
info link L
Data Pointer to
next node

Operations on linked list

e |nsert
O Insert at first position
0 Insert at last position
0 Insertinto ordered list

e Delete

e Traverse list (Print list)

e Copy linked list

Types of linked list

Singly Linked List
e |tis basic type of linked list.

// C Structure to represent a node
struct node
{

int info

struct node *link

¢ Each node contains data and pointer to next node.

e Last node’s pointer is null.

e Limitation of singly linked list is we can traverse only in one direction, forward direction.

1 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

A next B next » C next null

4
O

A 4

Singly Linked List

Circular Linked List

Circular linked list is a singly linked list where last node points to first node in the list.

It does not contain null pointers like singly linked list.

We can traverse only in one direction that is forward direction.

It has the biggest advantage of time saving when we want to go from last node to first node, it
directly points to first node.

A good example of an application where circular linked list should be used is a timesharing problem
solved by the operating system.

next

v
>
v

o

next » C | next » D | next

Circular Linked List

Doubly Linked list

Each node of doubly linked list contains data and two pointers to point previous (LPTR) and next
(RPTR) node.

ﬂgff // C Structure to represent a node
- D struct node
<« LPTR info RPFTR | » 1 o
int info
T T T struct node *lptr;

Pointerto Data Pointerto struct node *rptr;

previous node next node I

Main advantage of doubly linked list is we can traverse in any direction, forward or reverse.

Other advantage of doubly linked list is we can delete a node with little trouble, since we have
pointers to the previous and next nodes. A node on a singly linked list cannot be removed unless we
have the pointer to its predecessor.

Drawback of doubly linked list is it requires more memory compared to singly linked list because we
need an extra pointer to point previous node.

L and R in image denotes left most and right most nodes in the list.

Left link of L node and right link of R node is NULL, indicating the end of list for each direction.

2 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

null | A | next [» prev | B | next prev | ¢ | null
t Doubly Linked List *R

2. Discuss advantages and disadvantages of linked list over array.

Advantages of an array
1. We can access any element of an array directly means random access is easy
2. It can be used to create other useful data structures (queues, stacks)
3. ltis light on memory usage compared to other structures

Disadvantages of an array
1. Itssizeis fixed
It cannot be dynamically resized in most languages
It is hard to add/remove elements
Size of all elements must be same.
Rigid structure (Rigid = Inflexible or not changeable)

vk W

Advantages of Linked List
1. Dynamicsize
2. ltis easy to add/remove/change elements
3. Elements of linked list are flexible, it can be primary data type or user defined data types

Disadvantages of Linked List
1. Random access is not allowed. We have to access elements sequentially starting from the first node.
So we cannot do binary search with linked lists.
It cannot be easily sorted
We must traverse 1/2 the list on average to access any element
More complex to create than an array

vk W

Extra memory space for a pointer is required with each element of the list

3. What are the advantages and disadvantages of stack and queue
implemented using linked list over array?

Advantages and disadvantages of stack & queue implemented using linked list over array is described below,

3 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

Insertion & Deletion Operation

e Insertion and deletion operations are known as push and pop operation in stack and as insert and
delete operation in queue.

e Inthe case of an array, if we have n-elements list and it is required to insert a new element between
the first and second element then n-1 elements of the list must be moved so as to make room for
the new element.

e In case of linked-list, this can be accomplished by only interchanging pointers.

e Thus, insertion and deletions are more efficient when performed in linked list then array.

Searching a node
e |f a particular node in a linked list is required, it is necessary to follow links from the first node
onwards until the desired node is found.
e Where as in the case of an array, directly we can access any node

Join & Split
e We can join two linked list by assigning pointer of second linked list in the last node of first linked
list.

e Just assign null address in the node from where we want to split one linked list in two parts.
e Joining and splitting of two arrays is much more difficult compared to linked list.

Memory
e The pointers in linked list consume additional memory compared to an array

Size
e Array is fixed sized so number of elements will be limited in stack and queue.
e Size of linked list is dynamic and can be changed easily so it is flexible in number of elements

Insertion and deletion operations in Array and Linked-List

/
X1 | X2 | X3 | Xg | X5 | X6
Array < Insert Y at location 2. You have to move X,, Xj,..., X6
X1 Y Xz X3 X4 X5 XG
—
r X1 g XZ g X3 g X4
Linked- Insert Y at location 2. Just change two pointers
List < X1 > X, > X3 » Xy
» Y
-

4 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

4. Write following algorithms for singly linked list.
1) Insert at first position
2) Insert at last position
3) Insert in Ordered Linked list
4) Delete Element

First few assumptions,

e Unless otherwise stated, we assume that a typical element or node consists of two fields namely; an
information field called INFO and pointer field denoted by LINK. The name of a typical element is
denoted by NODE.

Node
A
Ve ~ // C Structure to represent a node
]] struct node
info link L {
T T int info
] struct node *link
Data Pointer to }:
next node ’

Function : INSERT(X, First)

X is new element and FIRST is a pointer to the first element of a linked linear list then this function
inserts X. Avail is a pointer to the top element of the availability stack; NEW is a temporary pointer
variable. It is required that X precedes the node whose address is given by FIRST.

1 [Create New Empty Node]
NEW <& NODE

1. [Initialize fields of new node and its link to the list]
INFO (NEW) € X

LINK (NEW) € FIRST

2. [Return address of new node]
return (NEW)

When INSERT is invoked it returns a pointer value to the variable FIRST

FIRST < INSERT (X, FIRST)

5 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

Function: INSEND(X, First) (Insert at end)

A new element is X and FIRST is a pointer to the first element of a linked linear list then this function
inserts X. AVAIL is a pointer to the top element of the availability stack; NEW and SAVE are temporary
pointer variables. It is required that X be inserted at the end of the list.

1. [Create New Empty Node]
NEW < NODE

2. [Initialize field of NEW node]
INFO (NEW) € X

LINK (NEW) €< NULL

3. [Is the list empty?]
If FIRST = NULL

then return (NEW)

4. [Initialize search for a last node]
SAVE < FIRST

5. [Search for end of list]
Repeat while LINK (SAVE) # NULL

SAVE €< LINK (SAVE)

6. [Set link field of last node to NEW)
LINK (SAVE) € NEW

7. [Return first node pointer]
return (FIRST)

6 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

Function : INSORD(X, FIRST))

e There are many applications where it is desirable to maintain an ordered linear list. The ordering is
in increasing or decreasing order on INFO field. Such ordering results in more efficient processing.

e The general algorithm for inserting a node into an ordered linear list is as below.

1. Remove a node from availability stack.

2. Set the field of new node.

3. If the linked list is empty then return the address of new node.

4. |If node precedes all other nodes in the list then inserts a node at the front of the list and returns
its address.

5. Repeat step 6 while information contain of the node in the list is less than the information
content of the new node.

6. Obtain the next node in the linked list.

7. Insert the new node in the list and return address of its first node.

e Anew element is X and FIRST is a pointer to the first element of a linked linear list then this function
inserts X. AVAIL is a pointer to the top element of the availability stack; NEW and SAVE are
temporary points variables. It is required that X be inserted so that it preserves the ordering of the
terms in increasing order of their INFO field.

1. [Create New Empty Node]
NEW < NODE

2. [Is the list is empty]
If FIRST = NULL

then LINK (NEW) € NULL
return (NEW)

3. [Does the new node precede all other node in the list?]
If INFO(NEW) < INFO (FIRST)

then LINK (NEW) € FIRST
return (NEW)

4. [Initialize temporary pointer]
SAVE < FIRST

5. [Search for predecessor of new node]
Repeat while LINK (SAVE) # NULL and INFO (NEW) = INFO (LINK (SAVE))

SAVE € LINK (SAVE)

6. [Set link field of NEW node and its predecessor]
LINK (NEW) € LINK (SAVE)

LINK (SAVE) €< NEW

7. [Return first node pointer]
return (FIRST)

7 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

By repeatedly involving function INSORD, we can easily obtains an ordered liner list for example the
sequence of statements.

FRONT € NULL

FRONT € INSORD (29, FRONT)
FRONT € INSORD (10, FRONT)
FRONT € INSORD (25, FRONT)
FRONT € INSORD (40, FRONT)
FRONT € INSORD (37, FRONT)

FRONT —» 29

FRONT —» 10 > 29

FRONT —» 10 » 25 > 29

FRONT —» 10 » 25 > 29 > 40

FRONT —» 10 > 25 > 29 > 37 » 40

Trace of construction of an ordered linked linear list using function INSORD

Procedure : DELETE(X, FIRST)
e Algorithm that deletes node from a linked linear list:-

vk w N PeE

6.

If a linked list is empty, then write under flow and return.

Repeat step 3 while end of the list has not been reached and the node has not been found.
Obtain the next node in list and record its predecessor node.

If the end of the list has been reached then write node not found and return.

Delete the node from list.

Return the node into availability area.

e A new element is X and FIRST is a pointer to the first element of a linked linear list then this
procedure deletes the node whose address is given by X. SAVE is used to find the desired node, and
PRED keeps track of the predecessor of TEMP. Note that FIRST is changed only when X is the first
element of the list.

8 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology

Linked List

[Is Empty list?]

If FIRST = NULL

then write (‘Underflow’)
return

[Initialize search for X]
SAVE < FIRST

[Find X]

Repeat thru step-5 while SAVE # X and LINK (SAVE) # NULL

[Update predecessor marker]
PRED < SAVE

[Move to next node]
SAVE € LINK (SAVE)

[End of the list]
If SAVE # X

then write (‘Node not found’)

return
[Delete X]
If X = FIRST (if X is first node?)

then FIRST € LINK (FIRST)
else LINK (PRED) € LINK (X)

[Free Deleted Node]
Free (X)

Function COPY (FIRST)
FIRST is a pointer to the first node in the linked list, this function makes a copy of the list.

The new list is to contain nodes whose information and pointer fields are denoted by FIELD and PTR,

respectively. The address of the first node in the newly created list is to be placed in BEGIN. NEW,
SAVE and PRED are points variables.
A general algorithm to copy a linked list

1.
2.

If the list is empty then return null
If the availability stack is empty then write availability stack underflow and return else copy the
first node.
Report thru step 5 while the old list has not been reached.

Obtain next node in old list and record its predecessor node.

node and add it to the rear of new list.

If availability stack is empty then write availability stack underflow and return else copy the

Q | Prof. Pradyumansinh Jadeja (9879461848)

| 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

6. Set link of the last node in the new list to null and return.

1. [Is Empty List?]
If FIRST = NULL
then return (NULL)

2. [Copy first node]
NEW < NODE

New < AVAIL

AVAIL € LINK (AVAIL)

FIELD (NEW) < INFO (FIRST)
BEGIN < NEW

3. [Initialize traversal]
SAVE € FIRST

4. [Move the next node if not at the end if list]
Repeat thru step 6 while (SAVE) # NULL

5. [Update predecessor and save pointer]
PRED € NEW

SAVE € LINK (SAVE)

6. [Copy node]
If AVAIL = NULL

then write (‘Availability stack underflow’)
return (0)
else NEW < AVAIL
AVAIL €< LINK (AVAIL)
FIELD (NEW) < INFO (SAVE)
PTR (PRED) € NEW

7. [Set link of last node and return]
PTR (NEW) € NULL

return (BEGIN)

10 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

5. Write following algorithms for circular link list
1) Insert at First Position
2) Insert at Last Position
3) Insert in Ordered Linked List
4) Delete Element

FUNCTION: CIRCULAR_LINK_INSERT_FIRST (X, FIRST, LAST)

e A new element is X; and FIRST and LAST a pointer to the first and last element of a linked linear list
respectively whose typical node contains INFO and LINK fields. AVAIL is a pointer to the top element of
the availability stack; NEW is a temporary points variable. This function inserts X. It is required that X
precedes the node whose address is given by FIRST.

1. [Create New Empty Node]
NEW <= NODE

2. [Initialize fields of new node and its link to the list]
INFO (NEW) € X
If FIRST = NULL
then LINK (NEW) € NEW
FIRST € LAST € NEW
return(FISRT)
else LINK (NEW) € FIRST
LINK (LAST) € NEW
FIRST € NEW
return(FIRST)

When invoked, INSERT returns a pointer value to the variable FIRST.

FIRST< INSERT (X, FIRST, LAST)

FUNCTION: CIR_LINK_INSERT_END (X, FIRST, LAST)

e A new element is X; and FIRST and LAST a pointer to the first and last element of a linked linear
list respectively whose typical node contains INFO and LINK fields. AVAIL is a pointer to the top
element of the availability stack; NEW is a temporary points variable. This function inserts X. It
is required that X be inserted at the end of the list.

11 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

1. [Create New Empty Node]
NEW < NODE

2. [Initialize fields of new node and its link to the list]
If FIRST = NULL
then LINK (NEW) € NEW
FIRST € LAST € NEW
return(FIRST)
else LINK(NEW) € FIRST
LINK(LAST) € NEW
LAST € NEW
return(FIRST)

FUNCTION: CIR_LINK_INSERT_ORDER (X, FIRST, LAST)

e A new element is X; and FIRST and LAST a pointer to the first and last element of a linked linear
list respectively whose typical node contains INFO and LINK fields. AVAIL is a pointer to the top
element of the availability stack; NEW and SAVE are temporary points variables. It is required
that X be inserted so that it preserves the ordering of the terms in increasing order of their INFO
field.

12 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

[Create New Empty Node]
NEW < NODE

[Copy information content into new node]
INFO (NEW) € X

[Is Linked List is empty?]

If FIRST = NULL

then LINK (NEW) € NEW
FIRST €< LAST € NEW
return(FIRST)

[Does new node precedes all other nodes in List?]
If INFO (NEW) < INFO (FIRST)
then LINK (NEW) € FIRST

LINK (LAST) € NEW

FIRST € NEW

return(FIRST)

[Initialize Temporary Pointer]
SAVE € FIRST

[Search for Predecessor of new node]
Repeat while SAVE # LAST and INFO(NEW) > INFO(LINK(SAVE))
SAVE € LINK(SAVE)

[Set link field of NEW node and its Predecessor]
LINK(NEW) € LINK(SAVE)

LINK(SAVE) € NEW

If SAVE = LAST

then LAST € NEW

[Return first node address]
return(FIRST)

PROCEDURE: CIR_LINK_DELETE (X, FIRST, LAST)

A new element is X; and FIRST and LAST a pointer to the first and last element of a linked linear
list respectively whose typical node contains INFO and LINK fields. AVAIL is a pointer to the top
element of the availability stack;, this procedure deletes the node whose address is given by X.
TEMP is used to find the desired node, and PRED keeps track of the predecessor of TEMP. Note
that FIRST is changed only when X is the first element of the list.

13 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

1. [Is Empty List?]
If FIRST = NULL
then write (‘Linked List is Empty’)
return

2. [Initialize Search for X]
TEMP € FIRST

3. [Find X]
Repeat thru step 5 while SAVE # X and SAVE # LAST

4. [Update predecessor marker]
PRED €< SAVE

5. [Move to next node]
SAVE € LINK (SAVE)

6. [End of Linked List]
If SAVE # X
then write(‘Node not found’)

return
7. [Delete X]
If X =FIRST

then FIRST € LINK (FIRST)
LINK (LAST) € FIRST
else LINK (PRED) € LINK(X)
If X = LAST
then LAST € PRED

8. [Free Deleted Node]
Free (X)

14 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

6. Write an algorithm to perform each of the following operations on Circular
singly linked list using header node
1) add node at beginning
2) add node at the end
3) insert a node containing x after node having address P
4) delete a node which contain element x

FUNCTION: CIR_LINK_HEAD_INSERT_FIRST (X, FIRST, LAST)

e A new element is X; and FIRST and LAST a pointer to the first and last element of a linked linear
list respectively whose typical node contains INFO and LINK fields. AVAIL is a pointer to the top
element of the availability stack; NEW is a temporary points variable. HEAD is the address of
HEAD node. This function inserts X. It is required that X precedes the node whose address is
given by FIRST.

1. [Create New Empty Node]
NEW < NODE

2. [Initialize fields of new node and its link to the list]
INFO (NEW) € X
LINK (NEW) € LINK (HEAD)
LINK (HEAD) € NEW

FUNCTION: CIR_LINK_HEAD_INSERT_LAST (X, FIRST, LAST)

e A new element is X; and FIRST and LAST a pointer to the first and last element of a linked linear
list respectively whose typical node contains INFO and LINK fields. Avail is a pointer to the top
element of the availability stack; NEW is a temporary points variable. HEAD is the address of
HEAD node. This function inserts X. It is required that X be inserted at the end of the list.

1. [Create New Empty Node]
NEW < NODE

2. [Initialize fields of new node and its link to the list]
INFO (NEW) € X
LINK (NEW) € HEAD
LINK (LAST) € NEW
LAST € NEW

15 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

FUNCTION: CIR_LINK_HEAD_INSERT_AFTER_Node-P (X, FIRST, LAST)

e A new element is X; and FIRST and LAST a pointer to the first and last element of a linked linear
list respectively whose typical node contains INFO and LINK fields. Avail is a pointer to the top
element of the availability stack; NEW is a temporary points variable. HEAD is the address of
HEAD node. This function inserts X. It is required to insert a node after a node having address P.

1. [Create New Empty Node]
NEW < NODE

2. [Initialize fields of new node and its link to the list]
INFO (NEW) € X
LINK (NEW) € LINK (P)
LINK (P) € NEW
If P = LAST
then LAST € NEW

16 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

PROCEDURE: CIR_LINK_HEAD_DELETE (X, FIRST, LAST)

e FIRST and LAST a pointer to the first and last element of a linked linear list respectively whose
typical node contains INFO and LINK fields. Avail is a pointer to the top element of the
availability stack; SAVE is a temporary pointer variable. HEAD is the address of HEAD node. This
function inserts X. It is required to delete element having value X.

1. [Is Empty List?]
If FIRST = NULL
then write (‘Underflow)
return

2. [Initialize Search for X]
SAVE < FIRST

3. [Find X]
Repeat thru step 5 while INFO(SAVE) # X and SAVE # LAST

4. [Update Predecessor]
PRED < SAVE

5. [Move to next node]
SAVE € LINK(SAVE)

6. [End of the List]
If INFO (SAVE) # X
then write(‘Node not Found’)
return

7. [Delete node X]
If INFO (FIRST) = X
then LINK (HEAD) € LINK(FIRST)
else LINK (PRED) € LINK(SAVE)
If SAVE = LAST
then LAST € PRED

8. [Free Deleted Node]
Free (X)

17 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

7. Write following algorithms for doubly link list
1) Insert
2) Insert in Ordered Linked List
3) Delete Element

PRDCEDURE DOUBINS (L, R, M, X)

e Given a doubly link list whose left most and right most nodes addressed are given by the pointer
variables L and R respectively. It is required to insert a node whose address is given by the
pointer variable NEW. The left and right links of nodes are denoted by LPTR and RPTR
respectively. The information field of a node is denoted by variable INFO. The name of an
element of the list is NODE. The insertion is to be performed to the left of a specific node with
its address given by the pointer variable M. The information to be entered in the node is
contained in X.

1. [Create New Empty Node]
NEW ¢=1 NODE

2. [Copy information field]
INFO (NEW) € X

3. [Insert into an empty list]

If R = NULL

then LPTR (NEW) € RPTR (NULL) € NULL
L <€ R < NEW
return

4. [Is left most insertion ?]
If M=L
then LPTR (NEW) €NULL
RPTR (NEW) € M
LPTR (M)€ NEW
L € NEW
return

5. [Insert in middle]
LPTR (NEW)€ LPTR (M)
RPTR (NEW) € M
LPTR (M) € NEW
RPTR (LPTR (NEW)) € NEW
return

18 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology

Linked List

PROCEDURE DOUBINS_ORD (L, R, M, X)

information to be entered in the node is contained in X.

[Create New Empty Node]
NEW {1 NODE

[Copy information field]
INFO (NEW) € X

[Insert into an empty list]

If R = NULL

then LPTR (NEW) € RPTR (NULL) € NULL
L € R € NEW
return

[Does the new node precedes all other nodes in List?]
If INFO(NEW) < INFO(L)
then RPTR (NEW) € L

LPTR(NEW)< NULL

LPTR (L) € NEW

L € NEW

return

[Initialize top Pointer]
SAVE € L

[Search for predecessor of New node]

Given a doubly link list whose left most and right most nodes addressed are given by the pointer
variables L and R respectively. It is required to insert a node whose address is given by the
pointer variable NEW. The left and right links of nodes are denoted by LPTR and RPTR
respectively. The information field of a node is denoted by variable INFO. The name of an
element of the list is NODE. The insertion is to be performed in ascending order of info part. The

Repeat while RPTR(SAVE) # NULL and INFO(NEW) > INFO(RPTR(SAVE))

SAVE € RPTR (SAVE)

[Set link field of new node and its predecessor]
RPTR (NEW) € RPTR(SAVE)

LPTR (RPTR(SAVE)) € NEW

RPTR (SAVE) € NEW

LPTR (NEW) < SAVE

If SAVE =R
then RPTR(SAVE) € NEW

19 | Prof. Pradyumansinh Jadeja (9879461848)

| 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

PROCEDURE DOUBDEL (L, R, OLD)

e Given a doubly linked list with the addresses of left most and right most nodes are given by the
pointer variables L and R respectively. It is required to delete the node whose address id
contained in the variable OLD. Node contains left and right links with names LPTR and RPTR
respectively.

1. [Isunderflow ?]

If R=NULL
then write (“ UNDERFLOW’)
return

2. [Delete node]

If L = R (single node in list)
then L€ R <€ NULL
else If OLD = L (left most node)

then L € RPTR(L)
LPTR (L) € NULL
else if OLD =R (right most)
then R € LPTR (R)
RPTR (R) € NULL
else RPTR (LPTR (OLD)) € RPTR (OLD)
LPTR (RPTR (OLD)) € LPTR (OLD)

3. [Return deleted node]
restore (OLD)
return

20 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

8. Write the implementation procedure of basic primitive operations of the
stack using: (i) Linear array (ii) linked list.

Implement PUSH and POP using Linear array

#define MAXSIZE 100
int stack[MAXSIZE];
int top=-1;

void push(int val)

{
if(top >= MAXSIZE)
printf('Stack is Overflow™);
else
stack[++top] = val;
by
int popQ
{
int a;
if(top>=0)
{
a=stack[top];
top—;
return a;
by
else
{
printf("Stack i1s Underflow, Stack is empty, nothing to POP!');
return -1;
he
by

21 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

Implement PUSH and POP using Linked List

#include<stdio.h>
#include<malloc.h>

struct node

{

int info;

struct node *link;
} *top;

void push(int val)
{
struct node *p;
p = (struct node*)malloc(sizeof(struct node));
p 2> info = val;
p =2 link = top;
top = p;
return;

}
int popQ)
{

int val;
if(top!=NULL)
{

val = top > info;
top=top ~>1link;
return val;

else

printf(*'Stack Underflow™);
return -1;

22 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology

Linked List

9. Write the implementation procedure of basic primitive operations of the

Queue using: (i) Linear array (ii) linked list

Implement Enqueue(lInsert)and Dequeue(Delete)using Linear Array

include <stdio.h>

define MAXSIZE 100

int queue[MAXSIZE], front =
void enqueue(int val)

{
if(rear >= MAXSIZE)

{

printf("Queue i1s overflow') ;

return ;

}

rear++;

queue [rear] = val;
if(front == -1)

{

front++;

}

nt dequeue()

- -

int data;
if(front == -1)
{

printf(*"'Queue is underflow') ;

return -1;

}
data = queue [front];

if(front == rear)

{

front = rear = -1;

front++;

}

return data;

23 | Prof. Pradyumansinh Jadeja (9879461848)

| 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

Implement Enqueue(lnsert)and Dequeue(Delete)using Linked List

#include<stdio.h>
#include<malloc.h>

struct node

t
int info;
struct node *link;
} *front, *rear;

void enqueue(int val)

{
struct node *p;
p = (struct node*)malloc(sizeof(struct node));
p 2> info = val;
p 2> link = NULL;
if (rear == NULL || front == NULL)
{
front = p;
}
else
{
rear > link = p;
rear = p;
}
}

int dequeue()

struct node *p;

int val;
it (front == NULL || rear == NULL)
{
printf(""'Under Flow');
exit(0);
3
else
{
p = front;
val = p 2 info;
front = front 2> link;
free(p);
3

return (val);

24 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

Darshan Institute of Engineering & Technology

Linked List

10.

Write an algorithm to implement ascending priority queue using

singular linear linked list which has insert() function such that queue
remains ordered list. Also implement remove() function

struct node

{

int priority;
int info;
struct node *link;

}*front = NULL;

insert()

{

first

struct node *tmp,*q;
int added _item,item _priority;
tmp = (struct node *)malloc(sizeof(struct node));

printf(""Input the item value to be added in the queue : "

scanf(*'%d", &added_item);
printf("Enter its priority : ");
scanf("'%d",&item_priority);
tmp->info = added_item;
tmp->priority = item_priority;

/*Queue is empty or item to be added has priority more than

item*/
iT(front == NULL || item_priority < front->priority)
{
tmp->link = front;
front = tmp;
}
else
{
q = front;

while(g->link = NULL &&
g->link->priority <= item _priority)
{
g=qg->link;
}
tmp->link = g->link;
g->link = tmp;
}/*End of else*/

}/*End of insert()*/

25 | Prof. Pradyumansinh Jadeja (9879461848)

| 130702 — Data & File Structure

Darshan Institute of Engineering & Technology Linked List

remove()
{
struct node *tmp;
iT(front == NULL)
printf(""Queue Underflow\n'™);
else
{
tmp = front;
printf("Deleted item is %d\n",tmp->info);
front = front->link;
free(tmp);

}
}/*End of remove()*/

display(Q
{
struct node *ptr;
ptr = front;
if(front == NULL)
printf(*'Queue is empty\n');
else
{
printf("'Queue is :\n"");
printf("Priority Item\n');
while(ptr = NULL)
{
printf(""%5d %5d\n",ptr->priority,ptr->info);
ptr = ptr->link;
}
}/*End of else */
}/*End of display() */

26 | Prof. Pradyumansinh Jadeja (9879461848) | 130702 — Data & File Structure

